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A mixture model for the probability distribution of rain
rate

Neal Jeffries! and Ruth Pfeiffer®**

! National Institute of Neurological Disorders and Stroke, 7550 Wisconsin Ave., Federal Bldg|7c06, Bethesda, MD
20892, U.S.A.
2 National Cancer Institute, 6120 Executive Blvd/EPS 8017, Rockville, MD 20852, U.S.A.

SUMMARY

In this paper we present a logistic mixture model for rain rate, that is, a model where the regime probabilities
are allowed to change over time and are modeled with a logistic regression structure. Such a model may be
used as an alternative to simple mixture, threshold, or hidden Markov models. The maximum likelihood
estimates for the model parameters are found using an EM algorithm and their asymptotic properties are
stated. The model is fit to hourly measurements of rain rate that are part of the GATE dataset. The results
are compared with results from a standard mixture model and from a single density model. Copyright
© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is a climatological observation that rain rate distributions change with the time of day due to
effects of the daily, or diurnal, heating cycle. The diurnal variability of rainfall has been inves-
tigated and documented for a variety of data sources. A recent example is a paper by Soman et
al. (1995), who averaged rain rate data over an area of the order of 10° km? from Darwin,
Australia to obtain a time series. By fitting periodograms and correlograms, they found strong
evidence for diurnal variation.

In addition to the variation of rain activity due to the diurnal effects of heating, many scientists
have suggested there are different types of rain (see, for example, Houze, 1981) which indicates
that a mixture density may be appropriate. Bell and Suhasini (1994), for example, used a non-
parametric principal components approach to estimate a mixture of densities.

In this paper we model the distribution of rain rate data as a two regime mixture with the
component distributions corresponding to stratiform (i.e. moderate), and convective (heavy),
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rain patterns. To incorporate the diurnal variation of the rain rate measurements, we let the
mixing probabilities depend on time through a logistic regression.

The logistic mixture model is presented in detail in the next section. In Section 2 we also
describe an EM algorithm approach to finding maximum likelihood estimates for the parameters
in the two component distributions as well as those parameters in the logistic regression that
predict the regime probabilities. In Section 3 we apply the model to rain rate data from the
GATE dataset. As a basis of comparison we include results for two nested models. The first is a
standard mixture model with constant regime probabilities, and the second model for comparison
is a single component, or no-mixture, model. In the last section we discuss the fit of the different
models and some of the related problems of identifiability that arise in the context of mixture
models.

2. MODEL FORMULATIONS AND ESTIMATION METHOD

Mixture models were developed as a way of analyzing data that arise from two or more distinct
data generation processes. Refer to McLachlan and Basford (1988), Titterington et al. (1985),
or Everitt and Hand (1981) for good introductions to mixtures. The logistic mixture models we
consider in this paper are characterized as follows. The data are pairs (Y;,z),j=1,...,n, where
¥; denotes the measurement of interest and z; is a p x 1 vector of covariates associated with the
Jjth measurement. We assume for brevity that there are only two states (or regimes), which we
label as state 1 and state 0, described by the random variable /. (The extension of our analysis to
more than two states is straightforward.) The state probabilities for the jth observation depend
on the covariate vector z; through a logistic regression model:

exp(zy) |
p[ J IZJ] p(zj Y) 1+3Xp(2','}’) ( )
The first component of z is equal to unity to allow for an intercept, and 7 is the p x 1 vector of
associated, unknown logistic regression coefficients.

Given z, the probability density function of y is given by the mixture model

81z, 0) = f(y;20) * (L=p(z: ) +f (s ) * p(25 7), V3]

where f(y;2), ae 4 = R, for some /, denotes a class of parametric density functions, and
6 = (9, %, 7). We interpret f(y; o) to be the conditional density of y, given I, = k, for ke {0, 1}.

2.1. The estimation method

We now discuss an EM (Expectation-Maximization) algorithm (see Dempster et al., 1977; Wu,
1983; McLachlan and Krishnan, 1997) for mixtures of the type defined above. The EM algorithm
is an alternative estimation procedure that is particularly well suited to approach problems with
missing, or unobserved, data. In this instance, the unobserved data form the knowledge of which
regime produced a given observation. The algorithm is used to maximize the likelihood, or
equivalently, the log likelihood given by 7., log g(y;|z;; 8), with g from Equation (2). It should
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be noted that an EM approach is not necessary — the parameters could be estimated by software
that has minimization or maximization routines (e.g. nlmin or nlminb functions in S-PLUS, or
routines in FORTRAN or C). We want to point out though, that X,;log g(y;|z; 8) will not be a
concave function because it is a mixture likelihood, and thus the Newton—Raphson based
optimizations may not work well. The advantage of using an EM algorithm lies in the fact that
the likelihood values increase (weakly) with each iteration. This means that if 6" denotes the EM
algorithms estimate of the true parameters after m iterations, then the EM estimates satisfy
L,(@"*") > L,(6™). This monotone property of the EM estimates, that is clearly not true for
estimates obtained by Newton—Raphson, becomes more important as the number of estimated
parameters increases (either because the model may have more than two component densities,
or the component densities are extended to have more parameters). As more parameters are
added, it is more likely that standard maximization routines (e.g. Newton—Raphson based
methods) will fail. There are cases in which the EM estimates may converge to a critical point
other than a local maximum, or other difficulties may occur (see Wu, 1983; McLachlan and
Basford, 1988), but such aberrations are usually overcome by changing the starting values of the
algorithm. Wu (1983) states conditions that ensure that all limit points of any instance of the
EM algorithm are local maximizers of L,(6). The implementation and interpretation of the EM
algorithm in the context of mixture models has been discussed by several authors, including
Titterington ef al. (1985), McLachlan and Basford (1988), and McLachlan and Krishnan (1997).
The derivation of the algorithm for logistic mixtures (i.e. variable probabilities of the form
exp(z’y)/(1+exp(z’y)) is straightforward, detailed in Jeffries (1998), and will not be presented
here. The procedure may be summarized as follows: given observed outcomes yy, 5, ..., y, and
covariates z,,2, ..., Zp

1. Choose initial parameter values 8' = (a}, 1, 7").

2. Given 0™ = (o3, a7, y™) (the estimate after m iterations of the algorithm) calculate

= f (i’j; o )P(:Zﬁ)’ ) —— where p(z;y) = 1 exp(z ﬁ”) .
Sz y™) +f (35 61 —p(zy ) +exp(z’yy)

3. Given {f7"} find ag*', o7*', and y™*' where

aft! = arg max Zﬁ;" log f(y;; @) 3)
J

oap*! = argmax . (1 — f") logf (3 @) @

J

and
¥+ = argmax 3 57" log p;(v) + (1= F/)og(1 —p,(»))- ©)
J

4. Repeat steps 2 and 3 until |6™*' —6"| and X, logg(y;lz; 6™*") —Z;log g(y;lz;; 8™) are smaller
than some prespecified tolerance level.
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_2n
W=y

The functional form of p* and p° imposes a diurnal cycle as long as o # 0. The o parameter
controls the variability, or amplitude in the cycle. The f gives freedom to the phase shift of the
cycle and the J allows these probabilities to fluctuate about some average value different from
1/2. To put the regime probabilities for our rain rate model, exp(asin(wh+ f)-+ )/
(1+exp(asin(wh;+ p)+9)), in the form exp(zjy)/(1 + exp(zjy)), we use that sin(x+y)
= cosx siny -+ cosy sinx, and rewrite asin(wh;+ f)+6 as zjy, where z; = (1, cos wh;, sin wh)) and
y = (8, asin B, acos f).

The probability density function of our logistic mixture model for the rain rate measurements
is thus given by

gxh; [0, f°, bey a0, B, 0)) = p*(hy; . B, ) f*(x;) +p° (s 0, B, 6) f°(x)). @®
s and c are labels designating stratiform and convective and f°(-) and f*(-) denote the densities
of rain rate for the two regimes. We additionally assume that the densities for convective and
stratiform rain rates have the same functional form and differ only by their parameter values.

Following the suggestions of Kedem ez al. (1990, 1997), we take f to be the density of a two
parameter lognormal distribution

1/($xy/2m)exp(— (log x—w)*/2¢%) x>0,

0 x<0.

f(X)={

Note that the logarithm of X has a normal distribution. We thus let y; = log x;. The parametric
model is now given by

g(IOg lehj; ¢ = (l"'s’ ¢'s’ Hes ¢c, o, ﬁ’ 5)) = g(yjlhj; '// = (ﬂs’ ¢s’ Hes ¢ca o, ﬁ’ 5)) (9)
= ps(hj’ a, ﬁ: 5)f(yp #sa ¢s) +pc(hja o, ﬂ3 5)f(}’p Hes ¢c)’ (10)
where f stands for the normal density with regime dependent mean y, and variance ¢3, for

k=s,c.
As a basis of comparison we include results for two nested models:

g(y_/’ Hss ¢s’ Hes ¢csp) = pf(yj’ Hs» ¢s) + (1 —p)f(y_b Hes ¢c) (1 1)

and

g ) =f (1 8)- (12)

The model in (11) corresponds to a standard mixture model with fixed regime probabilities and
the model in (12) is a one regime, or no-mixture model.
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Table 1. Three models of rain rate.

Parameter LM 2R 1R

Us —0.0930 —1.06 0-497
(0.0831) (0.0984) (0.0436)

¢, 0.907 0.4124 1.63
(0.104) (0.0934) (1.81)

He 1.74 0.709 NA
(0.160) (0.0944) NA

b 0.870 1.205 NA
(0.157) (0.0972) NA

d 1.12 —1.994 NA
(0.334) (0.415) NA

B 0.766 NA NA
(0.116) NA NA

o 1.48 NA NA
(0.234) NA NA

Log likelihood —1380.97 —1417.05 - 1430.09

In Table I we present point estimates and standard errors (in parentheses) for the three models.
The column headed LM corresponds to results for logistic mixtures, the 2R heading denotes the
mixture with constant regime probabilities in (11) and the 1R indicates results for the one regime

model.

4. DISCUSSION

First we interpret the results of fitting the LM model. From the parameter estimates we obtain
mean rain rates for each of the two densities. The mean for the stratiform regime is
exp(—0.093040.5-0.907) = 1.43 mm/hour and the mean for the convective regime is 8.82 mm/h-
our. From these means and the derived hourly regime probabilities, we produce estimated hourly
rain rates. A plot of the stratiform regime probabilities and the estimated hourly rates is included
in Figure 1. The plots indicate that the more intensive rain rates are associated with the afternoon.

The results of Table I indicate the surprising degree to which our estimates of stratiform and
convective parameters differ between the LM and 2R model. Not only are the parameters of the
component densities quite dissimilar, but the estimated regime probabilities are also markedly
different. The unconditional estimate of the stratiform regime probability, p* = 0.678, from LM
is obtained as Z,p*(h; «, B, 6) P(k), where P(h) is the observed proportion of the data at hour A.
This is considerably higher than the proportion of the stratiform observations estimated from
the standard mixture model, 0.12. This discrepancy may best be explained through examination
of a histogram of the log rain rates (see Figure 2). Figure 2 also contains plots of the estimated
densities of the LM and 2R regime, where the LM plot was created with the averaged p* = 0.678.
The histogram and density plots indicate the 2R log likelihood may be maximized around a
different pair of modes than those that maximize the LM log likelihood. This finding suggests
we should be diligent in making sure the log likelihood is maximized at the reported values. In
our investigations the 2R and LM estimates were both robust to different starting values, as well
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Figure 1. Estimated regime probabilities and rain rates.

as different optimization methods (both the EM algorithm approach outlined in Section 2, as
well as generic maximization routines, were used). We are not sure how to explain why the two
models pick out such different component densities other than to surmise that the par-
ameterization of the diurnal cycle captures effects that are obscured when constant regime
probabilities are imposed. These results also suggest that perhaps investigation of a three regime
model is warranted. Bell and Suhasini (1994) used a non-parametric principal components
approach to estimating a mixture of densities and found support for two distributions (with
mean rain rates of 2.6 and 8.8 mm/hour — very similar to our results) but the data were not better
fit by allowing for three distributions. We performed some estimation of three regime models
with fixed probabilities, but the estimates were not robust (i.e. different starting points led to
different estimates) and the greatest log likelihood we were able to achieve was —1410.5 still
inferior to that obtained under the two regime LM model (—1381). The results also suggest that
in passing to each of the more restrictive nested models the explanatory power is significantly
weakened. We will discuss a formal test of such hypotheses in a subsequent paper. What may be
most surprising is the apparent power that is gained by parameterizing the regime probabilities
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Figure 2. Estimated densities and histogram of log rain rates.

according to a daily cycle. The addition of the § and « parameters increases the log likelihood
by approximately 36 over what was obtained from the 2R model. One might want to conclude
that under the null hypothesis that the 2R model is correctly specified, then

2 # (log likelihood(LM) — (log likelihood(2R)) 2 £,

This would be incorrect as the f term is not identified under the null hypothesis that
p*(h;; a, B,0) = p,aconstant. By this we mean, while it is clear that « = 0 under the null hypothesis,
any value of § would suffice, and hence § is not identified. A similar, though more difficult,
identification problem arises if we want to compare either the LM or 2R model to the 1R model.
These identifiability problems invalidate traditional approaches to hypothesis testing. Empirical
process theory has been applied to yield asymptotic distributions of the likelihood ratio statistic
in many instances - see Dacunha-Castelle and Gassiat (1997) for approaches to general mixtures
and Jeffries (1998) for logistic mixtures in particular. Others (Feng and McCulloch, 1996;
McLachlan ez al., 1993) advocate a bootstrap or Monte Carlo approach to testing whether the
data are generated by a 1R or a 2R model (with obvious extensions for treating an LM model).

Copyright © 2001 John Wiley & Sons, Ltd. ' Environmetrics 2001; 12:1-10
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A full description of the ideas in these papers exceeds the scope of this discussion. We will take
up these questions at length in future work.

ACKNOWLEDGEMENTS

We thank Dr Paul Smith for his helpful remarks and comments and Dr Tom Bell for bringing the rain
application to our attention. N.J. is supported by the Patricia Roberts Harris Fellowship. R.P. is supported
by NASA grant NGT-30332.

REFERENCES

Bell TL, Suhasini R. 1994. Principal modes of variation of rain-rate probabilitiy distributions. Journal of Applied
Meteorology 33:1067—-1078.

Dacunha-Castelle D, Gassiat E. 1997. Testing in locally conic models, and application to mixture models. ESIAM:
Probability and Statistics 1:285-317.

Dempster DA, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, Series B 39:1-22.

Everitt BS, Hand DJ. 1981. Finite Mixture Distributions. Chapman and Hall: London.

Feng ZD, McCulloch CE. 1996. Using bootstrap likelihood ratios in finite mixture models. Journal of the Royal Statistical
Society, Series B 58:609—-617.

Houze RA. 1981. Structures of atmospheric precipitation: a global survey. Radio Science 16:671-689.

Hudlow MD, Patterson VL. 1979. GATE Radar Rainfall Atlas. NOAA Special Report, U.S. Government Printing Office:
‘Washington.

Jeffries N. 1998. Logistic Mixtures of Generalized Linear Model Time Series. Ph.D. Thesis, University of Maryland.

Kedem B, Chiu LS, North GR. 1990. Estimation of mean rain rate: application to satellite observations. Journal of
Geophysical Research 95:1965-1972.

Kedem B, Pfeiffer R, Short DA. 1997. Variability of space-time mean rain rate. Journal of Applied Meteorology 36:443—
451.

McLachlan GJ, Basford KE. 1988. Mixture Models: Inference and Applications to Clustering. Marcel Dekker: New York.

McLachlan GJ, Krishnan T. 1997. The EM Algorithm and Extensions. Wiley: New York.

McLachlan GJ, Basford KE, Green M. 1993. On inferring the number of components in normal mixture models.
Research Report #9, Department of Mathematics, The University of Queensland: Australia.

Soman VV, Valdes JB, North GR. 1995. Satellite sampling and the diurnal cycle statistics of Darwin rainfall data. Journal
of Applied Meteorology 34:2481-2490.

Titterington DM, Smith AFM, Makov UE. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley: New York.

Wu CF. 1983. On the convergence properties of the EM algorithm. Annals of Statistics 11:95-103.

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12:1-10



